Journal of Organometallic Chemistry, 141 (1977) 325-330 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ARENE—RUTHENIUM COMPLEXES CONTAINING NITROGEN DONOR LIGANDS

ROBERT H. CRABTREE and ALAN J. PEARMAN *

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette (France) (Received July 5th, 1977)

Summary

The complexes [(arene)RuCl₂]₂ (arene = C_6H_6 or p-MeC₆H₄CHMe₂) react with hydrazine hydrate or 1,1-dimethylhydrazine in tetrahydrofuran or methanol to give [(arene)Ru(N₂H₄)₃]²⁺ or [(arene)Ru(NH₂NMe₂)₃]²⁺ and with ethylenediamine (= en) to give [(arene)RuCl(en)]⁺. Pyridine displaces only the hydrazine ligands from [(arene)Ru(N₂H₄)₃]²⁺ while the relatively more π -accepting PMe₂Ph replaces both these and the arene ligand.

Introduction

The dimers [(arene)RuCl₂]₂ (I) (arene = C_6H_6 , C_6H_5Me , $p-C_6H_4Me_2$, 1,3,5-Me₃C₆H₃, C₆H₅OMe or *p*-MeC₆H₄CHMe₂) have been shown to undergo pridge cleavage upon treatment with a ligand L (L = PR₃, P(OR)₃, AsR₃, pyridine; R = alkyl or aryl) to give the monomers [(arene)RuCl₂L] [1,2]. I (arene = C₆H₆) reacts with AgBF₄ in methyl cyanide to give [(C₆H₆)Ru(MeCN)₃](BF₄)₂ [2], with NaS₂PR₂ to give [(C₆H₆)Ru(S₂PR₂)₂] (R = Me, Ph, OMe or OEt) [3], containing one mono- and one bi-dentate sulphur ligand, and with NH₂CHRCO₂K (R = H or Me) to give [(arene)RuCl(NH₂CHRCO₂)] [4]. Here we describe some further reactions of the complexes I (arene = C₆H₆ or *p*-MeC₆H₄CHMe₂).

Results and discussion

During our studies of the chemistry of arene—ruthenium complexes, we have found that I reacts with hydrazine hydrate or 1,1-dimethylhydrazine in tetrahydrofuran or methanol to give the complexes $[(arene)RuL_3]^{2+}$ which were isolated as tetraphenylborate or hexafluorophosphate salts by the addition of

* Address correspondence to this author.

NaBPh₄ or NH_4PF_6 as appropriate (eq. 1).

 $[(arene)RuCl_2]_2 \xrightarrow[(ij) L]{(ij) X^-} [(arene)RuL_3]X_2$ (I)
(II-VII)

(II) arene = C_6H_6 , L = N_2H_4 , X = BPh₄ (III) arene = p-MeC₆H₄CHMe₂, L = N_2H_4 , X = BPh₄ (IV) arene = C_6H_6 , L = NH₂NMe₂, X = BPh₄ (V) arene = p-MeC₆H₄CHMe₂, L = NH₂NMe₂, X = BPh₄ (VI) arene = C_6H_6 , L = NH₂NMe₂, X = PF₆ (VII) arene = p-MeC₆H₄CHMe₂, L = NH₂NMe₂, X = PF₆

These reactions are undoubtedly aided by the polar nature of the reaction medium, which facilitates the loss of chloride, and contrasts with the previously reported bridge cleavage reactions with phosphines, phosphites or pyridine. These were carried out in benzene, the neat phosphine or in pyridine and gave complexes of the type [(arene)RuCl₂L] [2].

The complexes II—VII are moderately air stable in the solid state but decompose quite rapidly in solution, even under an inert atmosphere (although more slowly in the latter case), thus necessitating fairly rapid recrystallisations. They behave as 2/1 electrolytes in acetonitrile solution (Table 1); the conductivity

TABLE 1

ANALYTICAL AND PHYSICAL DATA FOR THE ARENE-RUTHENIUM COMPLEXES

Complex	Colour	Yield (%)	Decom- position point (°C)	Conduc- tivity ^a (ohm ⁻¹ cm ² mol ⁻¹)	Analyses (found (calcd.) (%))			
					C	н	N	CI
II - 2MeCN	Yellow	63	125	247	69.5	6.5	10.8	
					(69.9)	(6.5)	(11.3)	
Ш• N ₂ H ₄	Yellow	79	126	240	69.5	7.1	10.8	-
					(69.5)	(7.1)	(11.2)	
IV	Brown	69	132	236	72.6	6.8	8.4	
					(72.2)	(7.1)	(8.4)	
V - Me ₂ CO	Yellow	77	109	253	72.0	7.6	7.5	
					(72.3)	(7.6)	(7.5)	
VI	Buff	62	157	336	22.3	4.5	12.9	
					(22.2)	(4.7)	(12.9)	
VII	Yellow	37	114	320	26.8	5.2	10.9	
					(27.2)	(5.4)	(11.9)	
VIII - 2Me ₂ CO	Yellow	55	167	257	76.9	5.9	3.6	
					(76.9)	(6.3)	(3.6)	
IX	Yellow	60	154	230	78.5	6.4	4.1	
					(78.9)	(6.3)	(3.8)	
x	Yellow	60	108	231	79.0	6.5	3.7	
	1. A.				(79.1)	(6.6)	(3.6)	
XI	Yellow	53	216	104	64.5	5,9	4.5	6.4
					(64.7)	(5.7)	(4.7)	(6.0)
XII	Yellow	75	180	102	66.3	6.5	4.4	6.2
					(66.5)	(6.5)	(4.3)	(5.5)

^a In ca. 10^{-3} M MeCN solution; quoted ranges for 1/1 electrolytes: 120-160 and for 2/1 electrolytes: 220-300 ohm⁻¹ cm² mo⁻¹ [5].

326

(1)

values for complexes VI and VII are slightly higher than the quoted range $(220-300 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1})$ but other examples are known [5].

The dimethylhydrazine complexes IV—VII show a moderately strong band in their infrared spectra at about 3200 cm⁻¹ attributable to ν (NH) while the hydrazine complexes II and III show several bands in the region 3150—3350 cm⁻¹; all the complexes show a δ (NH) absorption at about 1600 cm⁻¹ (Table 2). The ¹H NMR spectra (Table 2) of complexes II—VII all show resonances for the aromatic protons of the coordinated arenes characteristically shifted upfield

TABLE 2

Complex	IR (cm ⁻¹) ^a		¹ H NMR ^b		
	<i>v</i> (NH)	۵(NH)	Arene	Other ligands	
11 - 2MeCN ^C	3325, 3255	1605 s(br)	5.57, s	3.31 and 5.73, (br) N ₂ H ₄	
III - N ₂ H ₄	3195 (br) 3335, 3305(br)	1600 s(br)	5.37 and 5.61, d(6), ArH	3.42 and 5.78, (br) N ₂ H ₄	
· · · · ·	3250, 3215		2.75, sp(6.6), ArCH 2.05, s, Me		
IV	3160(br)	1615 ms(br)	1.18, d(6.6), CH <u>Me</u> ₂ 5.86, s	6.64, (br) NH ₂ NMe ₂ 2.44, s, NH ₂ NMe ₂	
V - Me ₂ CO ^d	3165 ms(br)	1605 w(br)	5.52 and 5.78, d(6), ArH 2.94, sp(6.6), ArCH 2.05, s, Me 1.19, d(6.6), CHMe ₂	6.39, (br) NH ₂ NMe ₂ 2.43, s, NH ₂ N <u>Me₂</u>	
vi .	3215 ms	1618 ms	6.01, s	6.71 (br) N <u>H</u> 2NMe ₂ 2.49, s, NH2N <u>Me</u> 2	
VII	3246 ms	1618(br)	5.77 and 5.95, d(6), ArH 2.89, sp(6.6), ArCH 2.23, s, Me 1.25, d(6.6), CHMe ₂	6.54 (br) NH ₂ NMe ₂ 2.52, s, NH ₂ N <u>Me₂</u>	
VIII - 2Me ₂ CO ^e . <i>f</i> IX ^f		•	6.00, s 5.74 and 5.96, d(6), ArH ~2.8 ^g , ArCH 1.52, s, Me		
x ^f			0.98, d(6.6), CH <u>Me2</u> 5.65 and 5.87, d(6), ArH ~2.8 ^g , ArCH 1.51, s, Me 0.97, d(6.6), CHMe2	2.39, s, <u>Me</u> C ₅ H ₄ N	
XI	3305, 3280 3238(br), 3108 w	1580 s(br)	5.64, s	2.10, (br) (CH ₂ N <u>H</u> ₂) ₂ 2.26—2.48, m, (CH ₂ NH ₂) ₂	
XII	3300, 3288 3230, 3207 3125	1583 s(br)	5.34 and 5.52, d(6), ArH 2.66, sp(6.6), ArCH 2.08, s, Me 1.22, d(6.6), CHMe ₂	$(CH_2NH_2)_2$ 2.20–2.44, m, $(CH_2NH_2)_2$	

IR AND ¹H NMR DATA FOR THE ARENE-RUTHENIUM COMPLEXES

^G In nujol mulls, medium intensity bands unless otherwise stated; (br) broad, s strong, ms moderately strong, w weak. ^b In C²H₃CN solution relative to TMS; reported as: position (δ , ppm) multiplicity (coupling constant [Hz]), assignment. Complexes containing acctone showed δ (Me) at 2.04 s; those containing acctonitrile showed δ (Me) at 1.87 s; those containing BPha showed δ (Ph) at ca. 6.8–7.5. s singlet, d doublet, sp septet, m multiplet, (br) broad. ^c ν (CN) at 2295 w and 2260 cm⁻¹. ^d ν (CO) at 1695 s cm⁻¹. ^e ν (CO) at 1705 s cm⁻¹. ^f 1H NMR spectrum showed resonances for the aromatic pyridine protons between δ 6.8 and 8.4. ^g Poorly resolved resonance due to low solubility of complex.

from those for the free arenes. The complexes IV—VII show a broad resonance at δ ca. 6.5 ppm, which disappears on addition of ²H₂O and is thus assigned to the NH protons of the dimethylhydrazine ligands. The low field position of this resonance (cf. δ 2.8 ppm for NH₂NMe₂ in C²H₃CN) suggests a considerable deshielding of the NH protons indicating bonding to the metal via the NH₂ nitrogen atom, a situation also favoured sterically. The complexes II and III both show two broad resonances for the NH protons of the hydrazines, one at δ ca. 5.5 ppm, which by comparison with the dimethylhydrazine complexes is assigned to the protons on the nitrogen atom bound to the metal, and the other at δ ca. 3.5 ppm. These two resonances are of approximately equal intensity for complex II, but for complex III the resonances at δ ca. 5.5 and ca. 3.5 ppm correspond to approximately 6 and 10 protons respectively, the higher intensity of the high field resonance being due to a molecule of hydrazine of crystallisation.

The complexes II and III react with pyridines to give $[(arene)Ru(py)_3](BPh_4)_2$ as shown in eq. 2.

$$[(\operatorname{arene})\operatorname{Ru}(\operatorname{N}_{2}\operatorname{H}_{4})_{3}](\operatorname{BPh}_{4})_{2} \xrightarrow{py} [(\operatorname{arene})\operatorname{Ru}(py)_{3}](\operatorname{BPh}_{4})_{2}$$
(2)

(II or III)

(VIII-X)

(VIII) arene = C_6H_6 , py = C_5H_5N (IX) arene = p-MeC₆H₄CHMe₂, py = C_5H_5N (X) arene = p-MeC₆H₄CHMe₂, py = 4-MeC₅H₄N

The complexes VIII—X are yellow, air-stable crystalline solids which behave as 2/1 electrolytes in acetonitrile solution (Table 1).

Reaction of complexes II—VII with dimethylphenylphosphine gives products which do not contain coordinated arene and the exact nature of these compounds is still under investigation. This is in contrast to the reactions involving the relatively donor nitrogen ligands above and is a consequence of the greater π acceptor properties of the PMe₂Ph ligand which upon coordination labilises the arene ligand by successfully competing for metal electron density. Similarly, refluxing I (arene = 1,3,5-Me₃C₆H₃ or *p*-MeC₆H₄CHMe₂) in pyridine leads to [(arene)RuCl₂(py)] whereas treatment of I with an excess of PMe₂Ph leads to [Ru₂Cl₃(PMe₂Ph)₆]Cl [2]. Also, reaction of [(C₆H₆)RuCl₃Ru(C₆H₆)]PF₆ with pyridine in boiling ethanol leads to a mixture of [(C₆H₆)RuCl(py)₂]PF₆ and [RuCl₂(py)₄] while reaction with PMe₂Ph gives only [Ru₂Cl₃(PMe₂Ph)₆]Cl [6].

Treatment of complexes I (arene = C_6H_6 or p-MeC₆H₄CHMe₂) with one equivalent of ethylenediamine (= en) in methanol followed by addition of NaBPh₄ gives the yellow, air-stable crystalline complexes [(arene)RuCl(en)]BPh₄ (eq. 3) which are 1/1 electrolytes in acetonitrile solution (Table 1).

 $[(arene)RuCl_2]_2 \xrightarrow{(i) en} [(arene)RuCl(en)]BPh_4$

(3)

(I)

(XI and XII)

(XI) arene = C_6H_6 (XII) arene = p-MeC₆H₄CHMe₂ The use of an excess of ethylenediamine in reaction 3 gives, in addition to the above products, small yields of the known [7] cation $[Ru(en)_3]^{2^*}$; the mother liquor on standing slowly deposits yellow crystals of the salt $[Ru(en)_3]$ -(BPh₄)₂ · 2MeOH.

The complexes XI and XII show several bands in the region 3100-3310 cm⁻¹ of their infrared spectra attributable to $\nu(NH)$ and a strong, broad band at ca. 1580 cm⁻¹ for $\delta(NH)$ which also includes a component due to the BPh₄ anion (Table 2). The ¹H NMR spectrum of complex XI (Table 2) shows a broad resonance at δ 2.10 ppm which disappears on addition of ²H₂O and is assigned to the NH protons of the (en) ligand, but a similar resonance was not detected for complex XII. The reasons for this are not at present clear.

Experimental

All manipulations were performed under dinitrogen using standard Schlenk techniques.

NMR spectra were run on a Perkin-Elmer R12A spectrometer and IR spectra on a Perkin-Elmer 257 grating spectrometer. Conductivity measurements were performed using a Philips PW9504/00 conductivity meter and a PW9510 conductivity cell. Melting points were determined on a Kofler hot-stage and analyses were performed by the Service de Microanalyse, C.N.R.S., Gif-sur-Yvette. RuCl₃ · $3H_2O$ was a generous loan from the Compagnie des Métaux Précieux.

$[(C_6H_6)Ru(N_2H_4)_3](BPh_4)_2 - 2MeCN(II)$

To a suspension of $[(C_6H_6)RuCl_2]_2$ [2] (0.2 g) in methanol (10 cm³) was added hydrazine hydrate (0.5 cm³) and the mixture stirred for 30 min. The resulting red solution was filtered and NaBPh₄ (0.8 g) added to precipitate a pale-yellow solid which was isolated by filtration, washed with water (2 × 10 cm³) and recrystallised from CH₃CN/Et₂O to give yellow crystals (0.5 g, 65%).

$[(p-MeC_{6}H_{4}CHMe_{2})Ru(N_{2}H_{4})_{3}](BPh_{4})_{2} \cdot N_{2}H_{4}(III)$

To a suspension of $[(p-MeC_6H_4CHMe_2)RuCl_2]_2$ [2] (0.25 g) in tetrahydrofuran (10 cm³) was added hydrazine hydrate (0.5 cm³) and the mixture stirred vigorously for 30 min during which time an orange oil separated. Addition of NaBPh₄ (0.8 g) resulted in dissolution of the oil to give a yellow solution. This was taken to dryness in vacuo and CH₂Cl₂ (10 cm³) was added. The resulting yellow solid was filtered, washed with CH₂Cl₂ (5 cm³), and water (2 × 10 cm³) and recrystallised from CH₃CN/Et₂O to give yellow crystals (0.65 g, 79%).

$[(C_6H_6)Ru(NH_2NMe_2)_3](X)_2$ (IV, $X = BPh_4$; VI, $X = PF_6$)

To a suspension of $[(arene)RuCl_2]_2$ (0.2 g) in methanol (10 cm³) was added NH₂NMe₂ (0.5 cm³) and the mixture stirred for 30 min. The products were isolated by the addition of NaBPh₄ (0.8 g) or NH₄PF₆ (0.8 g) as appropriate. Yields, IV 69%; VI 62%.

$[(p-MeC_6H_4CHMe_2)Ru(NH_2NMe_2)_3](BPh_4)_2 \cdot Me_2CO(V)$

To a suspension of $[(p-MeC_6H_4CHMe_2)RuCl_2]_2$ (0.25 g) in tetrahydrofuran (10 cm³) was added NH₂NMe₂ (0.5 cm³) and the mixture stirred for 1 h. NaBPh₄

(0.8 g) was added to the resulting orange solution and the mixture stirred for a further 30 min. This was then taken to dryness in vacuo and water (10 cm³) added. The resulting yellow solid was filtered, washed with water (2×10 cm³) and rapidly recrystallised from Me₂CO/Et₂O to give yellow crystals (0.7 g, 77%).

$[(p-MeC_6H_4CHMe_2)Ru(NH_2NMe_2)_3](PF_6)_2(VII)$

To a suspension of $[(p-MeC_6H_4CHMe_2)RuCl_2]_2$ (0.25 g) in methanol (15 cm³) was added NH₂NMe₂ (1.0 cm³) and the mixture stirred for 30 min. NH₄PF₆ (1.0 g) was added to the resulting yellow solution and the mixture stirred for a further 30 min. The solution was reduced to ca. half-volume in vacuo and water added dropwise with stirring until the solution was faintly cloudy. On standing at -40°C for about 2 weeks, yellow crystals were deposited (0.24 g, 37%) which were filtered, washed with a little chilled water and dried in vacuo.

$[(Arene)Ru(py)_3](BPh_4)_2(VIII-X)$

To a solution of $[(C_6H_6)Ru(N_2H_4)_3](BPh_4)_2 \cdot 2MeCN (0.2 g)$ in acetone (10 cm³) was added pyridine (0.5 cm³) and the solution stirred for 3 h. Reduction in volume of the solution in vacuo led to the deposition of yellow crystals of $[(C_6H_6)Ru(C_5H_5N)_3](BPh_4)_2 \cdot 2Me_2CO$ (VIII, 0.13 g, 55%).

The complex $[(p-MeC_6H_4CHMe_2)Ru(C_5H_5N)_3](BPh_4)_2$ (IX) was similarly prepared from $[(p-MeC_6H_4CHMe_2)Ru(N_2H_4)_3](BPh_4)_2 \cdot N_2H_4$ except that Et₂O (10 cm³) was added after solvent volume reduction to precipitate the crude solid, which was recrystallised from CH₃CN/Et₂O to give yellow crystals in 60% yield.

The complex $[(p-MeC_6H_4CHMe_2)Ru(4-MeC_5H_4N)_3](BPh_4)_2$ (X) was similarly prepared except that the reaction mixture was first taken to dryness. MeCN (5 cm³), Et₂O (5 cm³) and EtOH (5 cm³) were added and slow solvent removal in vacuo gave the complex as a yellow microcrystalline solid in 60% yield.

[(Arene)RuCl(en)]BPh₄ (XI and XII)

To a suspension of $[(C_6H_6)RuCl_2]_2$ (0.2 g) in methanol (10 cm³) was added ethylenediamine (0.05 cm³; one equiv.) and the mixture stirred for 1 h. The mixture was filtered and NaBPh₄ (0.3 g) added to the resulting yellow-green solution to give $[(C_6H_6)RuCl(en)]BPh_4$ (XI) as a yellow microcrystalline solid (0.25 g, 53%) which was filtered, washed with chilled water (5 cm³) and chilled methanol (5 cm³) and dried in vacuo.

The complex $[(p-MeC_6H_4CHMe_2)RuCl(en)]BPh_4$ (XII) was similarly prepared from $[(p-MeC_6H_4CHMe_2)RuCl_2]_2$ as yellow crystals in 75% yield.

Acknowledgements

We thank Dr. Hugh Felkin for his encouragement and many helpful discussions, and the Compagnie des Métaux Précieux for a loan of ruthenium.

References

- 1 R.A. Zelonka and M.C. Baird, Can. J. Chem., 50 (1972) 3063.
- 2 M.A. Bennett and A.K. Smith, J. Chem. Soc. (Dalton), (1974) 233.
- 3 D.R. Robertson and T.A. Stephenson, J. Organometal. Chem., 107 (1976) C46.
- 4 D.F. Dersnah and M.C. Baird, J. Organometal. Chem., 127 (1977) C55.
- 5 W.J. Geary, Coord. Chem. Rev., 7 (1971) 81.
- 6 D.R. Robertson and T.A. Stephenson, J. Organometal. Chem., 116 (1976) C29.
- 7 A.D. Allen and C.V. Senoff, Can. J. Chem., 43 (1965) 888.